Extensions 1→N→G→Q→1 with N=C4 and Q=C32⋊D6

Direct product G=N×Q with N=C4 and Q=C32⋊D6
dρLabelID
C4×C32⋊D6366C4xC3^2:D6432,300

Semidirect products G=N:Q with N=C4 and Q=C32⋊D6
extensionφ:Q→Aut NdρLabelID
C41(C32⋊D6) = C3⋊S3⋊D12φ: C32⋊D6/C32⋊C6C2 ⊆ Aut C43612+C4:1(C3^2:D6)432,301
C42(C32⋊D6) = C12.86S32φ: C32⋊D6/He3⋊C2C2 ⊆ Aut C4366+C4:2(C3^2:D6)432,302

Non-split extensions G=N.Q with N=C4 and Q=C32⋊D6
extensionφ:Q→Aut NdρLabelID
C4.1(C32⋊D6) = He33D8φ: C32⋊D6/C32⋊C6C2 ⊆ Aut C47212+C4.1(C3^2:D6)432,83
C4.2(C32⋊D6) = He34SD16φ: C32⋊D6/C32⋊C6C2 ⊆ Aut C47212-C4.2(C3^2:D6)432,84
C4.3(C32⋊D6) = He35SD16φ: C32⋊D6/C32⋊C6C2 ⊆ Aut C47212+C4.3(C3^2:D6)432,85
C4.4(C32⋊D6) = He33Q16φ: C32⋊D6/C32⋊C6C2 ⊆ Aut C414412-C4.4(C3^2:D6)432,86
C4.5(C32⋊D6) = C3⋊S3⋊Dic6φ: C32⋊D6/C32⋊C6C2 ⊆ Aut C47212-C4.5(C3^2:D6)432,294
C4.6(C32⋊D6) = C12⋊S3⋊S3φ: C32⋊D6/C32⋊C6C2 ⊆ Aut C47212+C4.6(C3^2:D6)432,295
C4.7(C32⋊D6) = C12.S32φ: C32⋊D6/C32⋊C6C2 ⊆ Aut C47212-C4.7(C3^2:D6)432,299
C4.8(C32⋊D6) = He33SD16φ: C32⋊D6/He3⋊C2C2 ⊆ Aut C4726C4.8(C3^2:D6)432,78
C4.9(C32⋊D6) = He32D8φ: C32⋊D6/He3⋊C2C2 ⊆ Aut C4726+C4.9(C3^2:D6)432,79
C4.10(C32⋊D6) = He32Q16φ: C32⋊D6/He3⋊C2C2 ⊆ Aut C41446-C4.10(C3^2:D6)432,80
C4.11(C32⋊D6) = C12.84S32φ: C32⋊D6/He3⋊C2C2 ⊆ Aut C4726C4.11(C3^2:D6)432,296
C4.12(C32⋊D6) = C12.85S32φ: C32⋊D6/He3⋊C2C2 ⊆ Aut C4726-C4.12(C3^2:D6)432,298
C4.13(C32⋊D6) = C32⋊C6⋊C8central extension (φ=1)726C4.13(C3^2:D6)432,76
C4.14(C32⋊D6) = He3⋊M4(2)central extension (φ=1)726C4.14(C3^2:D6)432,77
C4.15(C32⋊D6) = C12.89S32central extension (φ=1)726C4.15(C3^2:D6)432,81
C4.16(C32⋊D6) = He33M4(2)central extension (φ=1)726C4.16(C3^2:D6)432,82
C4.17(C32⋊D6) = C12.91S32central extension (φ=1)726C4.17(C3^2:D6)432,297

׿
×
𝔽