Extensions 1→N→G→Q→1 with N=C4 and Q=C32:D6

Direct product G=NxQ with N=C4 and Q=C32:D6
dρLabelID
C4xC32:D6366C4xC3^2:D6432,300

Semidirect products G=N:Q with N=C4 and Q=C32:D6
extensionφ:Q→Aut NdρLabelID
C4:1(C32:D6) = C3:S3:D12φ: C32:D6/C32:C6C2 ⊆ Aut C43612+C4:1(C3^2:D6)432,301
C4:2(C32:D6) = C12.86S32φ: C32:D6/He3:C2C2 ⊆ Aut C4366+C4:2(C3^2:D6)432,302

Non-split extensions G=N.Q with N=C4 and Q=C32:D6
extensionφ:Q→Aut NdρLabelID
C4.1(C32:D6) = He3:3D8φ: C32:D6/C32:C6C2 ⊆ Aut C47212+C4.1(C3^2:D6)432,83
C4.2(C32:D6) = He3:4SD16φ: C32:D6/C32:C6C2 ⊆ Aut C47212-C4.2(C3^2:D6)432,84
C4.3(C32:D6) = He3:5SD16φ: C32:D6/C32:C6C2 ⊆ Aut C47212+C4.3(C3^2:D6)432,85
C4.4(C32:D6) = He3:3Q16φ: C32:D6/C32:C6C2 ⊆ Aut C414412-C4.4(C3^2:D6)432,86
C4.5(C32:D6) = C3:S3:Dic6φ: C32:D6/C32:C6C2 ⊆ Aut C47212-C4.5(C3^2:D6)432,294
C4.6(C32:D6) = C12:S3:S3φ: C32:D6/C32:C6C2 ⊆ Aut C47212+C4.6(C3^2:D6)432,295
C4.7(C32:D6) = C12.S32φ: C32:D6/C32:C6C2 ⊆ Aut C47212-C4.7(C3^2:D6)432,299
C4.8(C32:D6) = He3:3SD16φ: C32:D6/He3:C2C2 ⊆ Aut C4726C4.8(C3^2:D6)432,78
C4.9(C32:D6) = He3:2D8φ: C32:D6/He3:C2C2 ⊆ Aut C4726+C4.9(C3^2:D6)432,79
C4.10(C32:D6) = He3:2Q16φ: C32:D6/He3:C2C2 ⊆ Aut C41446-C4.10(C3^2:D6)432,80
C4.11(C32:D6) = C12.84S32φ: C32:D6/He3:C2C2 ⊆ Aut C4726C4.11(C3^2:D6)432,296
C4.12(C32:D6) = C12.85S32φ: C32:D6/He3:C2C2 ⊆ Aut C4726-C4.12(C3^2:D6)432,298
C4.13(C32:D6) = C32:C6:C8central extension (φ=1)726C4.13(C3^2:D6)432,76
C4.14(C32:D6) = He3:M4(2)central extension (φ=1)726C4.14(C3^2:D6)432,77
C4.15(C32:D6) = C12.89S32central extension (φ=1)726C4.15(C3^2:D6)432,81
C4.16(C32:D6) = He3:3M4(2)central extension (φ=1)726C4.16(C3^2:D6)432,82
C4.17(C32:D6) = C12.91S32central extension (φ=1)726C4.17(C3^2:D6)432,297

׿
x
:
Z
F
o
wr
Q
<